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THE EFFECT OF SERIAL CORRELATION ON TESTS FOR 

PARAlMETER CHANGE AT UNKNOWN TIME1 


Compusearch Market and Social Research Ltd. and University 
of  Western Ontario 

It  is shown that serial correlation can produce striking effects in 
distributions of change-point statistics. Failure to account for these effects 
is shown to invalidate change-point tests, either through increases in the 
type 1 error rates if low frequency spectral mass predominates in the 
spectrum of the noise process, or through diminution of the power of 
the tests when high frequency mass predominates. These effects are char- 
acterized by the expression (257- f(O)/lT, f(h) dh), where f ( . )  is the spec- 
tral density of the noise process; in sample survey work this is known as 
the design effect or "deff." Simple precise adjustments to change-point test 
statistics which account for serial correlation are provided. The same 
adjustment applies to all commonly used regression models. Residual pro- 
cesses are derived for both stationary time series satisfying a moment 
condition and for general linear regression models with stationary error 
structure. 

1. Introduction. Stochastic models for time sequenced data are generally 
characterized by several unknown parameters. These parameters may change 
over time, and if the changes, when they occur, do so unannounced and at 
unknown time points, then the associated inferential problem is referred to as 
the change-point problem. Various important application areas of statistics 
involve change detection in a central way; two of these areas are quality 
assurance and environmental monitoring. 

Most of the statistics commonly applied to the change-point problem involve 
cumulative sums or partial sums of regression residuals. The distribution 
theory for these statistics has been computed under the assumption that the 
error process for the regression model is white noise. In this paper we consider 
linear regression of a random variable against general nonstochastic functions 
of time, but with error variables that form a serially correlated time series. We 
then examine the large sample properties of the stochastic processes defined by 
the partial sums of the regression residuals. Large sample distribution theory 
for fixed sample size statistics used to detect changes in regression parameters 
is usually derived by computing the distributions of various functionals on 
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these limit processes. Our results given below show that serial correlation in 
the error process can produce striking effects in these distributions. 

Among the statistics of concern to us are those derived through a Bayesian- 
type approach introduced to the change-point problem by Chernoff and Zacks 
(1964). Application of this method by Jandhyala and MacNeill (1989, 1991) 
yielded Cram&-von Mises type statistics defined in terms of the sequence of 
partial sums of regression residuals. The residual process for general linear 
regression with white noise errors was derived by MacNeill (1978a, b). 
MacNeill and Jandhyala (1985) examined the properties of the residual process 
for nonlinear regression. Johnson and Bagshaw (1974) obtained the limit 
processes for partial sums of observations from ARMA processes and explored 
the effect of ARMA noise on the CUSUM statistics proposed by Page (1954). In 
a sequel, Bagshaw and Johnson (1975) examined the effect of ARMA noise on 
the run length distribution for CUSUM7s. Kulperger (1985) considered polyno- 
mial regression and extended the results of MacNeill(1978a) to autoregressive 
error processes. 

Likelihood ratio statistics for testing for changes in mean and in simple 
linear regression in the presence of white noise have been discussed by Quandt 
(1960), Hawkins (1977), Worsley (1979, 1983), James, James and Siegmund 
(1987) and Kim and Siegmund (1989). These statistics are based on cumulative 
sums of residuals scaled by their standard deviations before maximization. In 
addition to providing test statistics, this approach permits joint inferences 
regarding the change-point and the parameters. Worsley (1986) and Siegmund 
(1988) discuss confidence sets for the change-point problem. 

Brown, Durbin and Evans (1975) proposed ad hoc procedures for testing for 
parameter change at unknown time in regression parameters. Their proce- 
dures are based on recursive residuals, and are capable of being applied to 
regression on a wide class of nonstochastic regressors. 

Picard (1985) uses likelihood based methods to derive statistics for testing 
for parameter change at  unknown time in autoregressive models. These 
methods are extended to the problem of detecting possible changes occurring 
at  the same instant in both a mean and autoregressive parameters. 

El-Shaarawi and Esterby (1982) considered inferences about the point of 
change in regression models with AR(1) error structure. Brillinger (1989) 
considered the problem of consistent detection of a monotonic trend superim- 
posed on a stationary time series. 

The plan of this paper is as follows. After introducing the problem in 
Section 2 we derive in Section 3 the residual processes for stationary time 
series satisfying a moment condition. These processes are used in Section 4 to 
obtain the residual processes for regression against general nonstochastic 
regression functions of time when the errors form a stationary time series. 
After a discussion of several examples, we indicate in Section 6 how the 
properties of the residual process can be used to adjust distributional results 
for a wide class of statistics defined in terms of partial sums of residuals to 
account for serial correlation. We discuss and illustrate adjustment factors for 
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common noise models. We then discuss in Section 8 the effect of serial 
correlation on change-point statistics and provide simple, easily applied, large 
sample adjustments to account for this serial correlation. Finally, in Section 9 
we present the results of a simulation which give some indication of the 
circumstances to which the asymptotic results apply and of those to which 
they should be applied with some caution. 

2. Regression models and error process structure. We first define 
the basic model. Let X(n), n = 0, t 1 , . . . , be a zero mean, discrete time, 
stationary time series with covariance function R(v) = E{X(n)X(n + v)}, 
Ivl < ~4 If the covariance function is absolutely summable, that is, 

then the spectral density function, f(A) = (1/2.rr)Clvl <-e-i"R(v), A E 

[ -.rr,.rr], exists. If the spectral density is positive, that is, if 

then the process can be expressed either as an infinite moving average or as an 
infinite autoregression; that is, it is invertible. 

In the sequel we require a central limit theorem for time series. Several 
different sets of conditions guarantee convergence in distribution of 
n-1/2CyL\ X ( j ) ,  t E [O,l], ([ntl is the integer part of nt) to the normal with 
zero mean and variance (2-rrf(0)t); these include those given by Hannan (1973) 
and those given by Brillinger (1973). Neither set of conditions implies the 
other, although both include most processes encountered in practice. Since the 
Brillinger conditions are more easily stated we use them. They are stated in 
terms of cumulant functions, which are defined as follows: 

Ck+l(vl,.. . , v k )  = Cum{X(n + v,), X (n  + v,),. .., X(n  + v,), X (n )}  

Stationarity to order k + 1is implicit in this definition. Second order station- 
arity together with finiteness of the variance implies weak stationarity. Note 
that the first two cumulants are E{X(n)) and R(v), Ivl < m. When necessary 
we assume the cumulants exist and satisfy what we call the Brillinger condi- 
tions, namely, 

for some finite L,, k = 1 , 2 , .. . . 

We now consider the regression part of the model and let {g,(.), 0 Ik Ip)  
be a collection of regressor functions defined on the unit interval [O, 11. A 
triangular array Y,(j), 15 j 5 n, n 2 1,of dependent variables is defined as 
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follows: 

For convenience only, the total time of observation has been compressed to the 
interval [0, 11,and observations are assumed to have been taken at  equi-spaced 
time points. The matrix formulation of this model is 

where X:, = {X(l), X(2), . . . ,X(n)) is a portion of a realization of the station- 
ary time series and where the ( j ,  i)th component of the design matrix is 
gi(j /n).  The regression parameter estimators are denoted by Bp,, where 

Least squares estimators were shown by Grenander (1954) to be efficient 
under quite general error process assumptions, although for purposes of 
inference it must be kept in mind that the covariance matrix for the parame- 
ters depends upon the spectrum of the noise process. 

Sequences of partial sums of regression residuals ar? denoted by Sgnj(l 5 

j I n ,  n 2 I), where Sgnj= C-,'=,{Y,(i>- pn(i)), Y,(i) = Bbng(i/n) and 
gr(i /n) = {g,(i/n), g,(i/n), . . . ,gp(i/n)). Sg,, = 0. Since we shall be con-
cerned with weak convergence in the space of functions continuous on the unit 
interval C[O, 11, we use these sequences of partial sums to define a sequence of 
stochastic processes [{egxn(t), t E [0, 111, n 2 11possessing continuous sample 
paths as follows: 

n1/2egxlt) = Sgnfnt1 - [ n t ] ) { ~ ( [ n t ]+ 1) -+ (n t  P([nt]  + 1)).  

Then if en,,, is an n x 1vector whose first [nt] components are 1,the next is 
nt - [nt] and the remainder zero, one can write 

Provided the Riemann integrals on [0, 11of g:(.), r = 0, .  . . ,p, exist then the 
(r,, r2)th component of lim nP1(A',A,) = G is 1: grl(t)grz(t) dt. We then define 
g(s, t) = gr(s)G-'g(t), assuming, here and in the sequel, that the inverse in 
this bilinear form exists. 

3. The  par t ia l  sum limit  process fo r  s ta t ionary t ime  series. To 
establish the limit process for [{OgXn(t), t E [O, 111, n 2 11 we need first to 
examine the properties of the sequence of partial sums of the error process 
X(n), n = 0, + 1,.. . . Hence we let SxJ= Xi=,X(i) and define another se- 
quence of stochastic processes [{Bxn(t), t E [O, ll), n 2 l l  possessing continuous 
sample paths by 

(7) n 1 / 2 ~ x l t )= Sxlnil+ (n t  - [nt]) X([nt]  + 1) .  

We note first that Ox,(0) = E{Bx,(t)) - 0 and consider next the covariance 
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kernel of the process, K(s, t )  = E{BX,(~)Bx,(t)}.We assume t = min(s, t), k = 

[ntl and I = [nsl. Since 

where c > 0 is independent of s,  t and n,  for large samples we need only 
consider Kn(k/n, l/n). Then 

Hence the covariance kernel of the process is defined in terms of the sum of 
the elements of the covariance function R(t2 - t,) for (t,, t,) in the region of 
Figure 1defined by A u B u C; that is 

FIG.1. Schematic diagram of the elements of the covariance kernel K(s , t ) .  
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Since 

C R(t1 - t2) = k C R(v) ,  

( t 1 , t Z ) = B u D  v l  l v o  


and 

then if the covariance function satisfies (11, for any s > 0 we can choose v, 
such that IR(v)l < s,  and also, having selected v,, we can choose n, 
such that if n > no,  then 

V,, V o  
- C IR(-v)I < s .  

v = 1  

Hence, 

-< 3s. 
If we combine this with (8) and recall that 2n- f(0) = Clvl<m R(v), we see that 

uniformly in (s, t). 
If t, < t, < t3, an argument similar to that used above can be used to show 

This implies the covariance matrix for the p-vector {Bxn(t,), . . . ,BXn(t,)> is 
Il2n- f(0)min(ti, tj)ll. We establish asymptotic normality in the following theo- 
rem. 

THEOREM1. Under assumptions (2) and (3) thep-vector {OXn(tl>, . . . ,OXn(t,>> 
has a nontrivial asymptotic probability distribution that is normal with zero 
mean and covariance matrix Il2n- f (O>min(ti, tj>ll. 

PROOF. The Brillinger (1973) condition (3) guarantees univariate asymp- 
totic normality of the components of the vector, and the Cram&-Wold device 
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of demonstrating asymptotic multivariate normality by showing asymptotic 
normality with zero mean and variance 2 7  f (O)CP, ,(Cf=jhi)'(tj - tj- ,) of 
CjP_,AjOX,(tj), 0 = tl < t2 < . . . < tn ,  where the A, are arbitrary real num-
bers, can be used to complete the proof for the p-dimensional case. 

We next show tightness of the sequence of measures PX,, n = 1 ,2 , .. . , 
generated in C[0711by [{B,,(t), t E [O,l]), n 2 11. The arguments used above to 
derive the covariance kernel for these processes can be used to show the 
existence of a constant C > 0 such that for t, > t,, 

where C is not dependent on t,, t, nor n.  To demonstrate (9) we assume n 
large and approximate BxJt2) - Bx,(tl) by (1,' 6 ) ~ ~(1,' 6 ) ~ ,where 
[nt,] = k and [nt,] = I .  Then 

where A = {(j,, j,, j,, j,): k <ji 2 I, i = 1 , . . . ,4). We now partition A as in 
Figure 1,except we allow for four indices instead of two. We let 

B = {( jl,j2, j3, ~ 4 ) :J, =J,+ ~ 1 ,~3 =J I  + uz, ~4 =J I  + u.3, 
at  least one ji E (k, 11, lvil 5 vo} 

and 

C = {(j,, j,, j,, j4): j, =j, + u,, j, = j l  + ~ 2 ,j 4  = j l  + u3, 
k <ji 5 I, i = 1,2,3,4,  lvil > vo}. 

We also define as follows a set D which lies outside A: 

D = {(j,, j,, j,, j4>:j, =j, + vl,  j, = j ,  + ~ 2 ,j 4  = j l  + ~ ' 3 ,  

at  least one ji E (k, I], at  least one ji 6L (k, 11). 

These fourth order moments can be expressed in terms of the corresponding 
fourth order cumulants and products of pairs of elements from the covariance 
function. Hence, 
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However, 

which was shown above to converge to (27f(0)(t2 - t1)I2. We now consider the 
fourth order cumulant terms: 

= -(1 
Z + Z - Z ) c u m { x ( j l ) ,  X ( j2 ) .  X(j3) .  X(j4)}.  

n2 B U D  C D 

The Brillinger condition (3) is applied as follows: 

1 I - k  
- Z Cum{X(jl), X ( j2 ) ,  x ( j 3 ) ,  x ( j 4 ) )  = Z IC4(vl,vz,v3)1
n2 B U D  Iv,l l V 0  

Also 

Furthermore, 

If we combine these inequalities for the fourth order cumulants with the result 
for the covariance function, we can then choose C independent of n such that 
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This, along with the fact that So = 0, implies tightness of the measures Px,, 
n = l , 2 ,  ... . 

If the time series is assumed to be Gaussian, the fourth order moments can 
be defined in terms of the covariance function. Then tightness can be demon-
strated for weakly stationary time series satisfying (1) and (2). 

We denote by {B(t), t E [O, 111 the standard Brownian motion process with 
continuous sample paths. Such a process is Gaussian with B(0) = E{B(t)1 = 0 
and K(s, t)  = E{B(s)B(t)) = min(s, t). The measure on C[O, 11corresponding 
to this process is Wiener measure denoted by W. If we let Bx(t) = 

{ 2 ~f(0))1/2B(t) and let Wx be the corresponding measure on C[O, 11then we 
have the following result, an extension of a result of Johnson and Bagshaw 
(1974) which applies to ARMA processes. 

THEOREM2. Under assumptions (2) and (3), 

pxn =j wx. 

PROOF. Theorem 1 assures us that the finite dimensional distributions 
of Pxn converge to those of W,, and (9) implies that the sequence Pxn, 
n = 1 ,2 , .. . , is tight. The proof is completed by applying Theorem 12.3 of 
Billingsley (1968). 

Another way of expressing the conclusion of Theorem 2 is to say that the 
partial sum sequences exn(t)given by (7) converge weakly to Brownian motion; 
that is, 

The conclusion of Theorem 2 holds under assumptions (1) and (2) if it is 
assumed additionally that the error variables are Gaussian. 

4. The regression residual process for stationary error structure. 
We now consider the sequence of partial sums of regression residuals when the 
error process is a stationary time series. If the regressor functions are continu-
ously differentiable on [O,1] and are linearly independent, then the bilinear 
form g(s, t)  is well defined. Then a sequence of functions hg,(.), n = 1,2, . . . , 
on C[O, 11into itself may be defined as follows: 

Abel's partial summation formula implies that hgn{8,,(,,) = OgXn(t);recall that 
0,,n(t) is defined by (6) .  If Pgxn, n = 1 ,2 , .. . , denotes the set of measures 
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generated in C[O, 11 by hgn{OXn(t)),then in the notation of Theorem 5.5 of 
Billingsley (1968), Pgx,= Pxn(hg, )- l. 

Also define hg(.), a function from C[O, 11into itself, as follows: 

This process has Bgx(0) = E{Bgx(t)} = 0 and covariance kernel 

If Pgxis the measure generated in C[O, 11by hg{Bx(.)), then, again in the 
notation of Theorem 5.5 of Billingsley (1968), Pgx= Wx(hg)-l. We now state 
the theorem which characterizes the limit of the sequences of partial sums of 
regression residuals when the error process is a stationary time series. 

THEOREM3. Assume conditions (2) and (3). Further, assume g,(t), r = 

0, .  . . ,p ,  are continuously differentiable and linearly independent. Then 

Pgx, ==, Pgx. 

PROOF. The functions hgn(.), n = 1,2,. . . , and hg(.) are continuous in 
the uniform topology on C[0,1]. Furthermore, since limn,,n-le',, ,,An = 

l;gl(s) ds and limn,,n(A',An)Y1 = G-l, we see that hgn(.) converges to 
hg(.). The proof follows by application of Theorem 5.5 of Billingsley (1968). 

Another way of expressing the conclusion of Theorem 3 is to say that the 
residual processes Bgxn(t) given by (6) converge weakly to limit processes 
Bgx(t) given by (10); that is, 

The conclusion of Theorem 3 holds under conditions (1) and (2) together 
with the additional assumption that the error process is Gaussian. 

Results similar to (10) and (11) can be demonstrated for nonlinear regres-
sion. For such models the bilinear form g(s, t) becomes a function also of the 
parameters. The additional assumptions required for the nonlinear case are 
provided by MacNeill and Jandhyala (1985). 

The time of observation need not be restricted to [0, 11nor must sampling 
be equispaced. Suppose the total sampling period is [0, TI and the rate of 
sampling is described by a nonconstant positive function {s(t), t E [0, TI). 
Then with S(t)  = 1; s(x) dx / l r  s(x) dx, the limit process Bgxs(.) may be 
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related to that of Theorem 3 by the relation 

Bgxs(t) = Bgx{S(t)}. 

5. Examples of residual processes. The first example we consider is 
the case of fitting an harmonic polynomial of degree p to a set of data. Let 
gk(t) = cos 2nkt, k = 0,1, .  . . ,p, and gp+k(t)  = sin 2nkt, k = 1 ,2 , .. .,p.  Fur- 
thermore let the noise process X(n), n = 0, -t l ,  . . . , be an autoregressive- 
moving average process defined by the equations 

where s(n), n = 0, -t 1 , . . . , is normal white noise with zero mean and vari- 
ance u2< a,and where A(z) = Cy=oa i z i  and B(z) = C?=, bizi, a, = bo = 1, 
are functions of the complex variable z with zeros bounded away from the unit 
disc. The spectral density of the noise process is 

Then (10) implies that the asymptotic residual process is 

P 


(cos2nks - cos2nk(t  - s ) )I ds1 . 

Equation (11) implies that the covariance kernel of the residual process is 

+ sin 2n j s  sin 2 n  jt} I . 

As another example we consider the case of fitting a polynomial of degree p 
to a set of data. Then gk(t) = tk ,  k = 0,1, .  . . ,p .  Let the noise process X(n), 
n = 0, + 1, . . . , be a multiplicative seasonal moving average process (with 12 
seasons) defined by the equation, 

where s(n), n = 0, -t 1 , . . ., is as in the previous example and the parameters 
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are such that la,] < 1and la,,l < 1.The spectral density is 

Then (10) implies [see MacNeill (1978b)l that the asymptotic residual process 
is 

B,x(t) = 4 1  + a1)(l  + a121 

where 

Formula (11) implies that 

6. Adjustments to account for the effect of serial correlation. In 
this section we indicate how the properties of the residual processes previously 
discussed can be used to adjust large sample distributional results for the class 
of statistics which are defined in terms of partial sums of residuals so as to 
account for serially correlated errors. 

We let F(.) be a continuous functional defined on C[a, bl, the space of 
continuous functions on the interval [a ,  b]. Furthermore, we assume F(.) to 
be homogeneous of degree d; that is, if f E C[a, b] and k is a constant, then 

Also we let Fn(.), n = 1,2, .. . , be a sequence of continuous functionals 
defined on C[a, b] such that Fn(.) -+ F(.). Then if f,, n = 1,2, .. . , and f are 
elements of C[a, b] and if fn + f uniformly on [a ,  b], we have 

Hence, if we consider OgX defined by (6), Bgx(.) defined by (lo), B,(.) 
defined by { 2 ~ f ( 0 ) ) - ~ / ~ ~ , ~ ( . ) ,  R,(o) is a consistent estimator of and if 
R(0) = / ?, f (A) dA, then a consequence of Donsker's theorem is the following 
result. 
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THEOREM4. If F,, n = 1 ,2 , .. . , and F are continuous functionals on 
C[a, bl satisfying (14), then for a E (0 , l )  

and 

The implication of (15) is that the large sample quantiles of Fn{Ogx,(.)} can 
be obtained from those of F{B,(.)} simply by multiplying by { 2 r f ( 0 ) } ~ / ~ .  In 
the more likely event of normalization with a consistent estimator of the 
standard deviation, corresponding results are given in (16). Hence if distribu- 
tion theory is available for the case of white noise error structure, then (15) 
and (16) give simple precise large sample adjustments to account for serial 
correlation in the noise process. 

We have assumed that the functional F(.)  is continuous on C[a,  bl. For 
certain statistics it is possible to enlarge this class to include useful functionals 
that are not continuous; see MacNeill (1978a). 

The availability of distribution theory for change-point statistics is dis- 
cussed below, and adjustments for common noise models are discussed in the 
next section. 

I
-1.0 -8 .8  -8.6 %.4 - 0 . 2  0.0 0.2 0.4 0.6 0 .8  1.0 

bl 

FIG. 2. Plot of { ~ T T  - = d t ) .f(O)}/lT,  f (h )  d h  forAR(1) processes, X ( t )  + b , ~ ( t  1) 
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FIG.3. Plot of { 2 a f ( O ) ] / j Z ,  f (A )dA  forMA(1) processes, X ( t )  = a( t ) + als( t  - 1). 

Parameter region where the zero frequency spectrum ordinate exceeds the average 
Q spectral density. 

FIG. 4. Plot of constant contours of { 2 x f ( O ) ) / l ? ,  f ( ~ ) d h  for AR(2) processes, X ( t )  + 
b l X ( t  - 1)  + b,X(t  - 2)  = a(t). 
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Parameter region where the zero frequency spectrum ordinate exceeds the average 
spectral density. 

FIG.5 .  Plot of constant contours of { 2 r f ( O ) ) / l ? ,  f (A)  dA for MA(2) processes, X ( t )  = ~ ( t )+ 
a,s(t - 1)  + a,s(t - 2). 

-1.0 4 . 8  - 0 . 6  -0 .4  -0.2 0.0 0.2 0 .4  0 .6  0 .8  1 .0  

bl  

Parameter region where the zero frequency spectrum ordinate exceeds the average 
spectral density. 

FIG. 6. Plot of constant contours o f  { 2 r f ( O ) ) / l T ,  f ( A ) d A  for ARMA(1 , l )  processes, X ( t )  + 
b,X(t  - 1)  = ~ ( t )+ a , ~ ( t- 1). 



567 SERIAL CORRELATION AND CHANGE-POINT TESTS 

7. Adjustments for common noise models to account for the effect 
of serial correlation. To give some insight into the nature of the adjust- 
ments required by (16) to account for serial correlation we have considered the 
following common models for the noise process: AR(l), AR(2), MA(l), MA(2) 
and ARMA(1, I), where the ARMA(p, q ) process is defined by (12). 

The adjustment 2 7  f(O)/l?, f(h) d h is plotted over the stationarity/invert- 
ibility region for the AR(1) and MA(1) processes in Figures 2 and 3. As can be 
noted from the figures the adjustment required to account for serial correla- 
tion in the noise process can be very significant if the parameters approach the 
edge of the stationarity/invertibility region. The contour curves for the adjust- 
ment factor are plotted for AR(2), MA(2) and ARMA(1,l) in Figures 4, 5 and 6, 
respectively. The hatched areas of the stationarity/invertibility regions indi- 
cate where the adjustment is greater than 1.Again it can be noted that as the 
parameters approach the edges of the stationarity/invertibility regions the 
effect of the adjustments becomes large. 

8. Effect of serial correlation on change detection statistics. We 
first consider Cram&-von Mises type statistics for testing for parameter 
change. For the case of white noise error structure with a 2< co, a statistic for 
detecting change at  unknown time in regression parameters is shown by 
Jandhyala and MacNeill (1991) to be 

Other Cram&-von Mises type statistics are derived by MacNeill (1982) and 
Jandhyala and MacNeill (1991) to deal with variations on the change-point 
theme. In (17), P,, m = 1, . . . ,n - 1, is a prior distribution on the change- 
point which, if the prior is uninformative, is P, = ( n - To make the 
statistic both operational and effective it is necessary to estimate u2with an 
estimator that is consistent under both null and alternative hypotheses; in the 
event of polynomial regression these estimators may be based on several 
differences of the data. 

Since the statistic in (17) is based on weighted "reversed" partial sums of 
residuals, large sample distribution theory may be based on limit processes of 
partial sums. If 

where Wt), t E [O,l] is a nonnegative weight function such that /: t ( l  -
t)!P(t) dt < co then Q,(P) converges in distribution as follows: 

Now assume the error process is not white noise and R(0) is estimated 
consistently by R(O) which is used in place of a2 in (17). Then, since the 
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statistic Q,( P)is a homogeneous functional of degree d = 2 on the normalized 
partial sum sequence, we have from (16) and the subsequent remarks regard- 
ing noncontinuous functionals that 

2=f(o) l q t )  B Z ( ~ )  dt.2 jI, f(A) dA /o 
The stochastic integral in (18) is defined in terms only of the weight function, 
Brownian motion and the regression part of model (5). The distribution of the 
stochastic integral in (18) has been tabulated for a variety of weight functions 
and regression models: polynomial regression with uniform prior by MacNeill 
(1978a); harmonic regression with uniform prior by Jandhyala and MacNeill 
(1989); Brownian motion with T( t )  = atk,  k > -2, by MacNeill (1974); Brow- 
nian motion, Brownian bridge and generalized Brownian bridges with Beta 
priors by Tang and MacNeill (1992); and the Brownian bridge process with 
9 ( t )  = {t(l - t)}-' by Anderson and Darling (1952). 

Expression (18) indicates that the large sample effects of serial correlation 
on Q,(P) can be adjusted for precisely by multiplying the quantiles of distribu- 
tions for the white noise case by {2af(O)//I, f(A) dA). To make this adjust- 
ment operational one will generally need to estimate f(A). This can be 
managed either by smoothing the periodogram of the residuals or by fitting a 
finite parameter scheme to the residuals. Care must be taken in estimating 
f(0) to minimize regression induced biases. 

In the case of white noise errors, {2af(O))R(O)-' = 1 and the tabulated 
distribution can be used directly. If the noise process is an autoregression of 
order 1,that is, X(t) + blX(t - 1) = d t ) ,  then 

Hence quantiles of the tabulated distribution based on white noise errors must 
be multiplied by (1 - bl)/(l + b,) in order to obtain corresponding quantiles 
for the statistic with first order autoregressive errors. See Figure 2 for a plot of 
this adjustment factor. If one ignores the effect of serial correlation on Q,(P) 
and uses the tables based on the white noise error process, then, when b, is 
positive, one will compare this test statistic with quantiles that are too large by 
a factor of [(I - bl)/(l + b,)l-l, and hence one will have reduced the power of 
the test; if b, is close to 1then the power will have been greatly reduced. On 
the other hand, when b, is negative one will compare the test statistic with 
quantiles that are too small, again by the factor [(I - bl)/(l + b,)]-', and 
hence one will increase the probability of a type 1 error; if b, is close to -1 
then this level of significance will be greatly increased from the putative level. 

More generally, the factor {2a f(O)}/jI, f(A) dA in (18) indicates that, if 
the zero frequency ordinate of the spectrum exceeds the average spectral 
density of the error process then ignoring serial correlation will result in 
increased probability of committing a type 1error, and if the zero frequency 
ordinate is exceeded by the average spectral density then ignoring serial 
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correlation in the error process will diminish the power of the test. The more 
pronounced is the imbalance between low and high frequency spectral mass, 
the more pronounced are the effects upon the power and the size of the test. 
These results correspond to those of Johnson and Bagshaw (1974) who empha- 
sized the nonrobustness of CUSUM tests to departures from independence. 

As can be noted from the figures in Section 7 the effects of serial correlation 
on change-point statistics increase as the boundary separating stationarity 
from nonstationarity is approached by the parameters of the noise process. In 
the event the boundary is reached, the correction method suggested above 
breaks down since nonstationary noise and parameter changes are confounded 
in the change-point problem. While considering a related problem Jandhyala 
and MacNeill(1992) have shown a duality between testing for the constancy of 
regression coefficients under random walk and change-point alternatives. The 
case of random walk alternatives has been explored by Nabeya and Tanaka 
(1988). 

A Bayes-type statistic for one-sided testing of a change in the mean was 
derived by Chernoff and Zacks (1964) in a paper that developed the methodol- 
ogy used subsequently to derive other Bayes-type change-point statistics. If 
Y(i), i = 1 , .. . ,n ,  is a sequence of independent variables with u 2  < m, then 
the statistic is 

where 3' = n-lCy=l(Y(i) - y)'. If the variables are independently and nor- 
mally distributed with known variance replacing G2, then exact distributional 
results for Tn are easily computed under both null and alternative hypotheses. 
Since T, is homogeneous of degree d = 1 in the partial sum sequence, the 
adjustment to account for serial correlation is {27~f(O)/l?, f(A) d ~ } ' / ~ .  

We now consider change-point tests based on likelihood methods. If Y(i), 
i = 1 , . . . ,n, is a sequence of independent normal variables with variance 
u 2  < a, then for testing for a shift in mean, Hawkins (1977) derived a 
likelihood ratio test statistic equivalent to 

where Tk = {(k/n)Sn - Sk}/{k(l - 3: Y(i) and Cf=,=Skk/n))1/2, is the 
maximum likelihood estimator of the variance. Worsley (1979) provided se- 
lected quantiles for Vn partly based on Bonferroni inequalities and partly 
based on simulations. The distribution of Vn does not converge to a fixed limit, 
but increases with n.  However, it is possible to define a restricted likelihood 
ratio statistic based on IT,/ maximized over nt, I k I nt,, where to and t, are 
bounded away from zero and one, respectively. James, James and Siegmund 
(1987) provided distributional results under both null and alternative hypothe- 
ses, and pointed out that the null restricted likelihood ratio statistic was 
asymptotically distributed as sup, <, ,,,,< ,IB,(t)l/{t(l - t)I1I2, where B,(.) 

0- - 1 
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is the Brownian bridge. Since this statistic is a functional that is homogeneous 
of degree d = 1 in the partial sum sequence normalized by an estimate of the 
standard deviation, and since the large sample approximation is simi-
larly homogeneous in the Brownian bridge, (16) indicates that the large 
sample adjustment required to account for serial correlation is {27rf(0)/ 
j?, f ( A )  d ~ ) ' / ~ .Figures 2-6 may be used for these statistics by taking square 
roots of the ordinates. The effects of ignoring serial correlation on the power 
and size of the restricted likelihood ratio test are similar to those discussed 
above for Cram&-von Mises type tests, but do not apply to the likelihood ratio 
test which does not converge to a fixed limit. 

Likelihood methods have been used by Quandt (1960),Worsley (1983) and 
Kim and Siegmund (1989) to derive tests for parameter change in simple 
linear regression with white noise error structure. The restricted large sample 
approximation to the likelihood ratio statistic is homogeneous of degree d = 1 
in the normalized residuals. Hence Theorem 4 indicates that the adjustment to 
the quantiles provided by the distributional results of Kim and Siegmund 
(1989)to account for serial correlation is again ( 2 7 ~f(O)/j?, f ( A )  d ~ ) ' / ~ .  

The CUSUM statistic proposed by Page (1954) for detecting one-sided 
changes in mean level is 

The two-sided version of this statistic as proposed by Nadler and Robbins 
(1971) is 

W, = max Sk- min Sk. 
lsksn lsksn 


The one-sided statistic normalized by the standard deviation of the observa- 
tions has the same large sample distribution under the null hypothesis as does 
supo B( t ) ,  where B ( .) is Brownian motion. The normalized two-sided 
statistic has the same distribution as the range of Brownian motion. This 
distribution was derived under the null hypothesis by Feller (1951)and under 
certain contiguous alternatives by Nadler and Robbins (1971). Since the 
statistics are homogeneous of degree d = 1 in the partial sum sequence, 
Theorem 4 indicates the large sample adjustment required to account for serial 
correlation is again ( 2 7f ( 0 ) / j?, f ( A )  d 

Brown, Durbin and Evans (1975)proposed a technique based on recursive 
residuals for testing for the constancy of regression relationships over time. 
Under the null hypothesis of no change in the regression parameters and the 
assumption of white noise error structure, these residuals have zero mean, 
constant variance and are uncorrelated. A test was proposed based on CUSUM's 
of these residuals normalized by the usual estimator of the standard deviation. 
A recipe was given for determining a pair of lines such that the probability of 
the CUSUM process crossing one or both of the lines is the significance level of 
the test. The location of these lines is characterized by a single tabulated value 
defined by the significance level. Since the test is a homogeneous functional of 
degree d = 1 on the recursive residuals and since the CUSUM process con- 
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verges weakly to Brownian motion, (16) indicates the large sample adjustment 
required to account for serial correlation in the noise process is to adjust this 
parameter by multiplying by {27~f(O)/l?, f ( A ) d ~ } ' / ~ .  This corresponds to 
the adjustment suggested by Cox (1975). 

9. Applicability of large sample serial correlation adjustments to 
finite sample statistics. In deriving the adjustments to change-detection 
statistics that are required to account for serial correlation in the noise 
process, we have neglected terms which become small when the sample size 
becomes large. In this section we present the results of a simulation study 
which give some indication of the circumstances to which the asymptotic 
results apply and of those to which they should be applied with some caution. 
We considered simple linear regression with AFt(1) error structure and applied 
the statistic Q,(P) in (17) with an uniformative prior on the change-point. We 
used a simulation of 1000 replications to estimate various parameters and 
quantiles of the distribution of the change point statistic. The estimates were 
obtained for time series lengths of 100, 200, 400, 800 and 1000, and for 
selected values of the AR(1) parameter ranging from -0.9 to 0.9. Table 1 
presents the results of the simulation. 

In broad terms the study suggests the following: 

1. As expected in finite sample studies, the larger the sample the better the 
conformance of estimated quantiles and parameter estimates to the asymp- 
totic theoretical quantiles and parameters. 

2.  	The closer the ARMA parameters are to the edge of the stationarity/invert- 
ibility region, the poorer the conformance of estimated quantiles and pa- 
rameter estimates to the asymptotic theoretical quantiles and parameters. 

3. Adjustment factors tend to be underestimated in small samples. I t  is well 
known that autoregression parameter estimates can have large biases for 
small samples. 

4. 	In the case of predominance of low frequency spectral mass in the error 
process, which is the most common situation encountered in practice, the 
estimated adjustment for serial correlation to change-point statistics tends 
to produce conservative tests. The opposite is the case when high frequen- 
cies predominate. 

5. As with all simulations, the effects of sample size on the distributions are 
felt most in the tails, with the 0.90 quantiles being better estimated than 
the 0.99 quantiles for all sample sizes. 

6. 	In all cases the adjustments result in substantially more reliable tests than 
are obtained by ignoring the effects of serial correlation. 

The specific conclusions suggested by this simulation study of AFt(1) noise 
are as follows. The large sample theory can be applied with confidence to tests 
of size larger than 5% for time series lengths of 100 or more observations 
provided Ibll < 0.5. By this we mean that the simulated quantile and the 
quantile obtained by multiplying the white noise quantile by the estimate of 
( 2 ~f (O)}/I ?, f (A) dA} do not differ by more than roughly 10%. If time series 
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TABLE1 

Simulation for selected parameters and quantiles of Q,(P): simple linear regression with AR(1) 

noise, for selected values of the AR parameter b ,  and with an uniformative prior P on the 


change-point [compare items (a), (b), (c) and (dl]' 


series bl = &I b ,  = 0.3 bl = 0.5 b,  = 0.7 bl = 0.9 
Parameter size (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

[(dl 0.11921 

Qn, 0.9dP) 

lengths are 200 or more, the large sample theory can be applied to tests of size 
5% or larger provided Ib,l < 0.7. If time series lengths are 1000 or more, the 
large sample theory can be applied to tests of size 5% or larger provided 
lbll < 0.9. In these cases the tests are conservative in the common situation 
when low frequency spectral mass predominates, that is, when b,  < 0. 

Johnson and Bagshaw's (1974) study of the effect of serial correlation on 
run length distribution indicates that when low frequency power predomi- 
nates, the run length for CUSUM tests is substantially shortened, while the 
opposite holds for the case when high frequency power predominates. Their 
simulation only considers the case of lbll s 0.5 but it appears that a prepon- 
derance of high frequency power produces finite sample average run lengths 
which exceed those suggested by asymptotic theory while a preponderance of 
low frequency power produces finite sample average run lengths which are 
shorter. These results also confirm that as the imbalance between high and 
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TABLE1(Continued) 

series bl = -0.1 bl= -0.3 bl= -0.5 bl= -0.7 b1= -0.9 

Parameter size (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

gn( p )  	 100 0.0804 0.0765 0.1128 0.1128 0.1647 0.1753 0.2720 0.3066 0.5019 0.7123 
200 0.0811 0.0790 0.1194 0.1197 0.1954 0.1886 0.3230 0.3448 0.7504 0.9324 
400 0.0801 0.0801 0.1224 0.1215 0.1986 0.1939 0.3439 0.3625 0.8851 1.0912 
800 0.0813 0.0811 0.1194 0.1229 0.1914 0.1975 0.3545 0.3692 1.1533 1.1787 

1000 0.0778 0.0807 0.1225 0.1227 0.1949 0.1974 0.3641 0.3721 1.1300 1.1942 
[(d) 0.06671 (c) 0.0815 0.1238 0.2000 0.3778 1.2540 

Qn,o,go(P) 	 100 0.1416 0.1368 0.1985 0.2015 0.2916 0.3133 0.4944 0.5479 0.9334 1.2729 
200 0.1474 0.1412 0.2023 0.2138 0.3729 0.3370 0.5870 0.6162 1.3614 1.6662 
400 0.1467 0.1432 0.2243 0.2171 0.3534 0.3466 0.5843 0.6479 1.8028 1.9501 
800 0.1438 0.1449 0.2071 0.2196 0.3412 0.3529 0.6434 0.6599 2.0367 2.1066 

1000 0.1351 0.1442 0.2208 0.2192 0.3411 0.3527 0.6618 0.6650 2.0349 2.1341 
[(d) 0.11921 (c) 0.1457 0.2214 0.3577 0.6756 2.2652 

Qn,0,95(P) 	 100 0.1777 0.1697 0.2471 0.2501 0.3489 0.3888 0.6148 0.6798 1.1119 1.5794 
200 0.1772 0.1752 0.2630 0.2653 0.4631 0.4181 0.7296 0.7646 1.6448 2.0674 
400 0.1803 0.1777 0.2854 0.2694 0.4327 0.4300 0.7243 0.8039 2.1961 2.4196 
800 0.1714 0.1797 0.2510 0.2725 0.4272 0.4379 0.7356 0.8187 2.5018 2.6137 

1000 0.016430.1789 0.2818 0.2720 0.4165 0.4377 0.7653 0.8251 2.5194 2.6479 
[(d) 0.14791 (c) 0.1808 0.2747 0.4437 0.8380 2.8099 

Qn,o,99(P) 	 100 0.2543 0.2498 0.3442 0.3681 0.4983 0.5722 0.8467 1.0006 1.4671 2.3248 
200 0.2630 0.2579 0.3614 0.3905 0.6369 0.6155 1.0323 1.1255 2.3203 3.0431 
400 0.2483 0.2615 0.4329 0.3965 0.5888 0.6330 1.0507 1.1833 2.7253 3.5615 
800 0.2596 0.2646 0.3690 0.4011 0.6195 0.6446 1.0517 1.2051 3.6154 3.8473 

1000 0.2293 0.2634 0.4250 0.4004 0.6070 0.6442 1.1481 1.2145 3.3893 3.8975 
[(d) 0.21771 (c) 0.2661 0.4044 0.6532 1.2339 4.1372 

DerivedA through simulation; (b) estimated by adjusting white noise values by 
2~ f(0)//ZT f(h) dh; (c) theoretical value; (d) white noise value to be used if serial correlation is 
ignored [see Table 1in Jandhyala and MacNeill (1991)l. 

low frequency power increases, the adequacy of asymptotic theory decreases. 
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